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Abstract
The dc electrical conductivity, σdc, was measured at room temperature by the ac
impedance method for (AgI)x–(Ag2O)y–(B2O3)1−(x+y) (x = 0.75–0.85; y =
0.09–0.15) glasses, which were prepared by the twin-roller rapid quenching
method. X-ray and scanning electron microscope analyses showed that,
together with β-AgI crystallites with poor σdc, nanocrystallites of α-AgI with
high σdc were dispersed in the glass matrix with low σdc. The volume fraction of
α-AgI phase, φ1, was determined successfully from the measured 109Ag NMR
spectrum and the density. The value of σdc increases with the increase of φ1.
The behaviour of σdc was analysed based on the generalized effective medium
theory for the coexisting system of three phases. A supplementary analysis was
performed based on a power law in the percolation theory. A threshold value of
0.144 was obtained for the ionic conduction, φc. Values of the critical exponents
were determined as t = 1.98 and s = 0.86, respectively. These characteristic
values of percolation were in good agreement with the universal values, which
have been predicted by computer simulations for the percolation of electrical
conduction.

1. Introduction

The superionic conductors are ionic solids or ionic glasses with far higher electrical
conductivities than those of ordinary solid ionic conductors. In the extreme case of α-AgI
crystal, its ionic conductivity amounts to that of an electrolyte solution. Much attention has
been focused on the mechanism and the application of this high ionic conductivity. However,
solid AgI is in the highly conductive phase, the α-phase, only in the high temperature range
(above 420 K) [1]. It is greatly desired to obtain such a high ionic conductivity in a low
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temperature range, such as at room temperature. Tatsumisago et al [2] presented a pioneering
study for the preparation of superionic conductors containing nanocrystallites of α-AgI in a
glass matrix at room temperature. Because of the existence of these nano α-AgI crystallites,
the ionic conductivity is considerably high. However, the analysis of the electrical conductivity
has not always been performed. Particularly, up to now, the effect of the variation of AgI
concentration has not been clarified.

The glass containing α-AgI precipitates is interesting because of its heterogeneous feature;
crystal particles with high ionic conductivity are dispersed in the glass matrix with low
conductivity. This situation may provide a good example of the percolation theory [3–5]
or the effective medium theory [6] for ionic conduction systems. Electrical conduction in
heterogeneous systems has been reviewed by Bergman and Stroud [7], Ce-Ben Nan [8],
Kirkpatrick [9], and Clerc et al [10]. To date, the percolation theory has been employed
to explain the behaviour of electrical conduction in heterogeneous materials or ‘artificial
composites’ which are composed of electronically highly conductive materials and insulators
(or poorly conductive materials). Here, the term ‘artificial composites’ means composite
materials obtained ‘artificially’, that is ‘composites’ prepared simply by pressing a mixture
of two constituent materials. In this respect, the α-AgI precipitated glass should be called
a ‘spontaneous composite’ because it is prepared in the cooling process from the melt
‘spontaneously’.

The dc electrical conductivity of heterogeneous systems increases rapidly with the increase
of the volume fraction of highly conductive phase, φ, when it exceeds the critical volume
fraction, or the threshold value of the volume fraction, φc. According to the percolation
theory [3–5], the dc electrical conductivity, σdc, can be expressed as two power laws. One
is σdc = σH(φ − φc)

t , which is valid for φ > φc (‘over φc’). In this equation, σH indicates the
dc electrical conductivity of the highly conductive phase and the critical exponent t represents
the approaching tendency of σdc to σH over φc. Another is σdc = σL(φc − φ)−s , which is valid
for φ < φc (‘below φc’). In this equation, σL is the dc electrical conductivity of the poorly
conductive phase and the critical exponent s represents the increasing tendency of σdc from
σL below φc. Historically, the electrical conduction in heterogeneous systems has also been
discussed from the effective medium (EM) theory. Recently McLachlan [11, 12] proposed
the generalized effective medium (GEM) theory, whose expression includes two power law
behaviours, σdc = σL(φc − φ)−s and σdc = σH(φ − φc)

t respectively, as two limiting cases,
σdc

∼= σL and σdc
∼= σH. Thus, the GEM formula can be applicable to all the range of

volume fraction. The behaviour of the electrical conductivity of a heterogeneous system can be
characterized by φc, t and s.

Scher and Zallen [5] and Zallen [13] revealed that φc is dependent only on the
dimensionality if φc is evaluated from pc, which is given by computer simulations for various
crystal forms [3, 4] as the threshold value of the probability of the occupancy on the site.
Therefore, φc can be considered to be universal. The universal value of φc for the three-
dimensional case is 0.16 ± 0.02 [5, 13]. It has also been considered that for the critical
exponents, t and s, there exist universal values, which are 2.0 for t and 0.87–0.89 for s
respectively [3, 4, 7, 10–12]. However, it is quite incredible that, to date, the set of characteristic
values of percolation, (φc, t, s), has not yet been determined completely for real materials, as
discussed in detail in section 4. Therefore, it is very interesting to investigate whether the
determined threshold value and the critical exponents of glass containing α-AgI precipitates
agree with the universal values [3, 4, 7, 10–12] or not.

The purpose of this study is to investigate from a viewpoint of percolation the behaviour
of the dc electrical conductivity for the (AgI)x–(Ag2O)y–(B2O3)1−(x+y) system, which is
a ‘spontaneous’ composite between the glass matrix and precipitates of nanocrystallites of
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α-AgI. The dc electrical conductivity was analysed as a function of volume fraction of highly
conductive α-AgI phase, φ1, successfully based on the GEM theory [11, 12]. The previous
GEM theory was limited to the binary composite and in this study the GEM theory was
extended to the ternary composite. A supplementary analysis was also performed based on
the power law in the percolation theory.

2. Experimental details

The superionic conductor glass containing nanocrystallites of α-AgI, (AgI)x –(Ag2O)y–
(B2O3)1−(x+y), was prepared in the following way. The reagents used are Aldrich 99.999%
for AgI and the special grade of Wako Pure Chemical for Ag2O and B2O3. The reagents,
Ag2O, B2O3, and AgI, were mixed together into fine powders in a mortar with the use of a
pestle. The mixture of these fine powders was melted at 923 K in an electric furnace. Then, the
homogeneous liquid was quenched with the use of a twin-roller rapid quenching apparatus [14].
The sample preparation was performed for (AgI)x –(Ag2O)y–(B2O3)1−(x+y) (x = 0.7–0.9, y =
0.05–0.20).

The rapidly quenched samples obtained were investigated with x-ray diffraction
analysis, scanning electron microscope (SEM) analysis, impedance measurements, and
109Ag NMR measurements. The x-ray diffraction analysis was performed on thin films
of rapidly quenched samples at room temperature by using a Rigaku MultiFlex with a
Cu Kα x-ray source. The impedance measurements were performed on pellet samples of
(AgI)x –(Ag2O)y–(B2O3)1−(x+y) (x = 0.75–0.85, y = 0.09–0.15) at room temperature by
using an HP4291A impedance analyser in the frequency range from 20 Hz to 1 MHz. The
pellet samples for the impedance measurements were prepared by pressing an assemblage of
the rapidly quenched samples with thin silver powder layers (as electrodes) on both sides [15].
The dc (direct current) part of the electrical conductivity, σdc, was extracted from the measured
impedance by the conventional method. The 109Ag NMR spectrum was obtained at 13.9 MHz
with the use of a Bruker MSL-300 spectrometer. The magic angle spinning method [16] was
adopted. Typical repetition time was 1 s. A dead time of 150–200 µs was adopted. The 109Ag
NMR was determined by the accumulation of 30 000–60 000 times. A 10 M aqueous solution
of AgNO3 was used as the reference of the chemical shift.

In this study an accurate value of φ1 was important for the analysis of the behaviour of σdc.
By coupling the data of the density and the peak area of 109Ag NMR signals, φ1 was evaluated.
The density was determined from the volume and the weight of the sample pellet prepared for
the density measurements. The volume of this sample pellet was calculated from its surface
area and thickness. The mass of this sample pellet was determined by weighing. This density
determination was performed with an accuracy over 99.9% judging from the comparison
between the density determined for the AgI pellet prepared and that in the literature [17]. A
typical example of a 109Ag NMR signal is shown in figure 1, which shows that there are three
109Ag NMR peaks. These three peaks are derived from Ag+ ions in the α-AgI and the β-AgI
phases and the glass matrix phase respectively, as explained in section 3. The peak areas in the
109Ag NMR signal were evaluated after the deconvolution of peaks.

The volume fraction of three phases (α-AgI phase, β-AgI phase, and glass matrix phase)
was evaluated as follows: the Ag mass ratio among these three phases was determined by the
ratio of the corresponding peak area in the 109Ag NMR signal; the mass of the respective phase
in the sample pellet for the density measurements was determined by considering this Ag mass
ratio, the total weight and the weight of both AgI and Ag2O of the rapidly quenched sample,
and the weight of this sample pellet; the volume of α-AgI phase and that of β-AgI phase in
this sample pellet were calculated by using their density data [17] and their evaluated mass
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Figure 1. Typical 109Ag NMR spectrum for the glass containing nanocrystallites of α-AgI.

data; the volume of the glass matrix was calculated from the difference between the measured
volume of this sample pellet and the sum of volume of both α-AgI phase and β-AgI one. From
these volumes, the evaluation was performed for the volume fraction of α-AgI phase, φ1, that
of β-AgI phase, φ2, and that of glass matrix phase, φ3. The determined set (φ1, φ2, φ3) was
adopted for the analysis of the measured conductivity. Needless to say, the same sample was
employed for all series of present experiments, the x-ray diffraction analysis, the SEM analysis,
the impedance measurements, and the 109Ag NMR measurements.

It was important for the exact evaluation of the set (φ1, φ2, φ3) to evaluate the peak area
in the 109Ag NMR signal accurately because the density determination was performed with a
sufficient accuracy, as described above. The reliability of the determination of the peak area
was over 98% judging from the reproducibility of the evaluation of the peak area by fitting a
Gaussian function to the peaks in the 109Ag NMR signal. The error bar of volume fraction was
estimated to be 2% at the maximum. This error bar was explicitly attached to the data points in
figures 2–4.

3. Results

The preparation of the superionic glass containing nanocrystallites of α-AgI was confirmed
qualitatively by the x-ray analysis; the Bragg peaks corresponding to the precipitated phases of
α-AgI and β-AgI respectively were observed in the halo pattern of the glass phase. The SEM
analysis showed that the particle size of α-AgI with almost round shape was a few 10 nm
and that of β-AgI was a few µm. Also from the 109Ag NMR signals, it was possible to
confirm quantitatively that the three phases (α-AgI and β-AgI crystallites, and glass matrix)
exist in the samples prepared. Three separate peaks can be seen in the 109Ag NMR spectrum
shown in figure 1. The positions of three peaks were in good agreement with the 109Ag peak
positions of α-AgI single phase, β-AgI single phase, and homogeneous glass phase containing
AgI respectively [16]. Therefore, it was concluded that these three peaks are derived from the
α-AgI and the β-AgI crystallites and the glass matrix, respectively.

By the rapid quenching technique, four kinds of glass were prepared, α-AgI precipitated
glass, β-AgI precipitated glass, both α-AgI and β-AgI precipitated glass, and homogeneous
glass. Among these samples, selected compositions for the dc conductivity measurements
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Figure 2. The dc electrical conductivity, σdc, at room temperature as a function of the volume
fraction of α-AgI, φ1; closed squares: experimental data; line: the curve fitted to equation (1).
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Figure 3. The effect of the variation of the threshold value, φc, on the predicted curve of the dc
electrical conductivity, σdc, by equation (1) (t = 1.98, s = 0.86).

were (0.85, 0.10, 0.05), (0.85, 0.09, 0.06), (0.83, 0.11, 0.06), (0.82, 0.13, 0.05), (0.80, 0.14,
0.06), (0.79, 0.11, 0.10), (0.79, 0.15, 0.06), (0.77, 0.15, 0.08), and (0.75, 0.15, 0.10); in
this notation a, b, and c in (a, b, c) correspond to the mole fraction of AgI(x), Ag2O(y), and
B2O3(1−(x+y)), respectively. The corresponding volume fractions of each phase evaluated for
these nine samples are respectively (0.354, 0.183, 0.463), (0.287, 0.152, 0.561), (0.238, 0.078,
0.684), (0.231, 0.077, 0.692), (0.210, 0.175, 0.615), (0.178, 0.00, 0.822), (0.173, 0.137, 0.690),
(0.110, 0.105, 0.785), and (0.00, 0.00, 1.00), with the notation of the set (φ1, φ2, φ3).
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Figure 4. The effect of the variation of critical exponents, t and s, on the predicted curve of the dc
electrical conductivity, σdc, by equation (1) (φc = 0.144).

As shown in figure 2, the measured dc conductivity (solid circles), σdc, was well
summarized as a function of the φ1 irrespective of φ2. The value of σdc increases rapidly
around φ1 = 0.16 with the increase of φ1.

4. Discussions and conclusions

The behaviour of the σdc obtained in the present study encouraged us to perform a percolation
analysis or a GEM analysis. At first the analysis was performed based on the GEM theory,
which can describe the conductivity behaviour in the whole range of volume fraction. The
GEM form for the binary composite has been successfully applied to several systems though the
systems studied were limited to electronic conduction systems [11, 12, 18–21]. It is expected
that the GEM theory is also applicable to ionic systems. As already described, the present ionic
system is composed of three phases, the high, poor and low conductive phases of α-AgI, β-AgI
and glass matrix respectively. Therefore, the GEM theory was extended to the case of ternary
composite. The explicit derivation is given in the appendix. The GEM formula for a ternary
composite is written as follows:

φ1

(
σ

1/t
1 − σ

1/t
m

σ
1/t
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1/t
m

)
+ φ2

(
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2 − σ

1/s
m

σ
1/s
2 + Aσ

1/s
m

)
+ φ3

(
σ

1/s
3 − σ

1/s
m

σ
1/s
3 + Aσ

1/s
m

)
= 0. (1)

In this equation, σi is the dc electrical conductivity of phase i (i = 1, 2 and 3), and σm

is that of effective medium composed of phases, 1, 2, and 3. The critical exponents, t and
s, have the same meaning as those in the power laws. In addition, the symbol A is defied as
A = 1−φc

φc
(φc: the threshold value of the volume fraction of phase 1 with the largest electrical

conductivity) [22].
In the application of equation (1), the phases, 1, 2, and 3, are assumed to correspond

to the α-AgI, the β-AgI, and the glass matrix phase respectively. The characteristic values
of percolation, φc, t , and s, were determined by fitting equation (1) to the experimental
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φ1 dependence of the σdc by the least squares method. As σ1, 16.7 �−1 m−1 was adopted by
extrapolating the temperature dependence of σdc for α-AgI over 420 K [1] to room temperature.
As σ2, the adopted value was 0.0002 �−1 m−1, which was the measured value in the present
experiment. As σ3, the adopted value was 0.0423 �−1 m−1, which was taken from the measured
σdc for the homogeneous glass containing the solubility limit of AgI.

The solid line in figure 2 shows the curve fitted to equation (1). This fitted curve was
obtained as follows: the set, (φ1, φ2, φ3), corresponding to the experimental dc electrical
conductivity, σ

Exp
m (φ1, φ2, φ3), was already presented in section 3; the set (σ1, σ2, σ3) is

given as described above; if the set (φc, t, s) is given, σm can be calculated by using
equation (1) and this calculated σm is denoted as σ

Try
m (φ1, φ2, φ3); the best set of (φc, t, s)

is obtained by minimizing the square of the standard deviation,
∑

(φ1,φ2,φ3)
(σ

Try
m (φ1, φ2, φ3) −

σ
Exp
m (φ1, φ2, φ3))

2. The GEM values, σ GEM
m , can be obtained from equation (1) by inserting the

best fitted set of (φc, t, s) and nine sets of (φ1, φ2, φ3) corresponding to σ
Exp
m (φ1, φ2, φ3). The

curve fitted to equation (1) was drawn by using these σ GEM
m .

From this analysis, the obtained φc was 0.144. The determined critical exponents were t =
1.98 and s = 0.86, respectively. These determined values are in good agreement with universal
values, φc = 0.16 ± 0.02 [5, 13], t = 2.0 [3, 4, 10–12] and s = 0.87–0.89 [3, 4, 10–12], which
are given by the computer simulations.

To verify the accuracy of this least squares determination by using the GEM theory, the
deviation of the curve from the experimental points was investigated by adopting values of
(φc, t, s) slightly different from the best set. As can be seen in figure 3, a considerable deviation
was observed in the case of φc being different from the best fitted value. This indicates the
reliability of the determination of φc. As can be seen in figure 4, the reliability is confirmed
also for the determination of t . However, figure 4 shows that the determination of s seems to
be performed in a slightly insensitive manner in the present study, though the best fitted value
of s itself remains as 0.86.

A power law analysis was also performed for the present experimental result. The best set
(φc, t) was determined for the log(σdc − σ3) − log(φ1 − φc) plot. In this case, the extrapolated
value of σdc of α-AgI at room temperature, 16.7 �−1 m−1, was also adopted as the data for
φ1 = 1 in addition to the present nine sets of experimental data, (φ1, σdc). The φc and t
obtained by the least squares method are 0.146 and 1.80, respectively. The value of φc is
in good agreement with 0.144 obtained by the GEM analysis. Therefore, the reliability was
confirmed for the φc obtained by the GEM analysis together with the adopted value of σdc for
α-AgI at room temperature. On the other hand, 1.80, given for t by the power law, was slightly
smaller than the value of t given by the GEM analysis, 1.98, which is in good agreement
with the universal value. According to Lin [23], a value smaller than 2 can be obtained as the
critical exponent t by a power law analysis for a composite in which the conductivity difference
between the constituent phases is not so large. The present smaller value of t in the power law
analysis, t = 1.8, seems to correspond to the case pointed out by Lin.

Needless to say, it is better to determine the characteristic values of percolation by using
as many data points as possible. In the present experiment, the α-AgI precipitated glass was
prepared only in a limited φ1 range. In spite of this limitation, φc seems to be determined
accurately by using the GEM theory. The percolation theory or the power law is correct only
over φc or below φc. Thus, in the percolation theory or the power law, the characteristic values
of percolation, φc, t and s, must be determined in the φ range over φc or below φc. This requires
many data points for the accurate determination of φc and t or φc and s. It must be stressed that
the GEM formula incorporates these power laws over φc and below φc as limiting cases. Thus,
it is valid in the whole range of the volume fraction (0–1). In addition, on determining φc, t



3624 K Nozaki and T Itami

and s by using the GEM theory, the values of σdc for φ = 0 and 1 are inserted beforehand as
input data. Therefore, as shown in figures 3 and 4, the determination of φc, t and s by the GEM
theory may be reasonably correct under the present condition, using nine data points. The good
agreement of φc, t and s with universal values may be reliable.

To date, reported characteristic values of percolation have not always been in agreement
with the universal values. This unpleasant situation can be seen in table 1 of Clarke et al
[24]. They showed that even φc varies from 0.07 to 0.75 though φc

∼= 0.15 can be seen most
frequently. The situation for t is worse. There were not so many systems for which the value
of t had been reported. In addition, the values of t vary in a wide range between 0.38 and
2.0. McLachlan and co-researchers [11, 12, 18, 19, 25] have extensively developed the GEM
analysis of the characteristic values of percolation, φc, t and s, for ‘artificial composites’. In the
case of such ‘artificial composites’, the volume fraction of constituent phases can be determined
easily with the knowledge of the density and the weight of constituent phases. The determined
φc was in many cases around 0.15, though there were some exceptions. However, obtained t and
s values depended on the sample measured and differed from the universal values. Recently,
quite low values of φc, below 1%, were reported for composite systems between carbon black
(fibre) and polymer [26–29]. The polymer material is not conductive. The highly conductive
carbon black (CB) particles have complex structures: hollow semi-spheres of a few graphite
layers, 1.0–1.5 nm in thickness, with a diameter of 30 nm [27]. These small values of φc

indicate that the ideal percolation analysis may be insufficient for the composite system with
‘complicated structure’.

The systems discussed above are materials with electronic conduction. The ionic
conduction system itself is fundamentally appropriate for the study of percolation phenomena
because of the lack of ‘scattering phenomena’ or ‘tunnelling phenomena’ at the boundary
between the highly conductive phase and the poorly conductive one. Such complex phenomena
usually appear for composites with electronic conduction. Nevertheless, this unsatisfactory
situation has been present for the study of composites with ionic conduction. To date,
many applications of percolation theory to ionic conduction systems have been limited to
homogeneous glasses [15, 30–33]. In such cases, the detail of the ‘evaluation of the volume
fraction of conductive phase’ is not always clear in their original references. In addition, the
reported φc or xc (the critical mole fraction of percolation) for these homogeneous glasses is
around 0.3, which is different from the universal value, 0.16 ± 0.02 [5, 13]. The percolation
behaviour with two thresholds (xc = 0.2 and 0.9) was found for AgI–Al2O3 composites [34].
In this study, the ‘modification of the interface’ was stressed. Recently, an experimental study
was performed for the composite material, (ZrO2: 8 at.% Y2O3) + m mol.% Y2O3, with ionic
conduction [35]. The reported φc is around 0.28, which was obtained based on the simplified
GEM theory (t = s in equation (A.2)). This rather large φc was attributed to the ‘dependence
of the grain size and the porosity on the volume fraction’. On the other hand, two characteristic
values of percolation close to the universal values, φc = 0.16 and t = 2.0, were reported by
the present authors [36] for the ‘artificial composite with ionic conduction’ composed of α-AgI
and BN, which do not react with each other. This study implies that the universal values may
be valid for the characteristic values of percolation, φc, t , and s, when there are no chemical
reactions between constituent phases and no complex grain structures.

Under these situations, the present study provided the universal values for φc, t and
s. This may be derived from the fact that the present glass containing α-AgI precipitates
is ‘spontaneous composite’, which may be characterized by the almost absence of chemical
reactions, and by the clear interface between constituent phases. Almost all the α-AgI
precipitates in the present glass show a round shape with nearly the same size of a few 10 nm,
as already described. This may be derived from their origin, namely they may evolve as
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liquid droplets in the two liquid phase separation process [37], which is included in the rapid
quenching process. In the case of a composite with ‘wide distribution of size and shape of
well conductive domain’ in a poorly conductive medium, σdc may depend not only on the
volume fraction but also on this distribution. However, the present system may be free from
the problems of ‘complicated structure’, ‘scattering phenomena’, ‘tunnelling phenomena’,
‘modification of the interface’, ‘dependence of the grain size and porosity on the volume
fraction’, and ‘wide distribution of size and shape of well conductive domain’ though they
are themselves interesting as physics. In addition, it is noteworthy that in the present study the
‘evaluation of the volume fraction of conductive phase’ was rigorously performed by combining
the 109Ag NMR spectra and the density data. For these reasons, a good agreement of φc with
the universal value was obtained in the present study. In other words, the superionic glass
containing spontaneous precipitates of nano α-AgI crystallites seems to be an ideal percolation
system.

Acknowledgments

The authors thank Professor J Kawamura and Dr N Kuwata for their helpful discussions in the
early stage of this study. The authors are grateful to Mr E Yamada for help with the NMR
measurements.

Appendix. The derivation of GEM theory for the dc electrical conductivity of three
phase case

According to the EM theory [6, 22], the dc electrical conductivity of the effective medium, σm ,
for a heterogeneous system composed of two phases, 1 and 2, is related to the volume fractions
and the electrical conductivities of these phases, φi and σi (i = 1 or 2). The relation, σ1 > σ2,
can be assumed. The explicit equation of σm is as follows:

φ1

(
σ1 − σm

σ1 + Aσm

)
+ φ2

(
σ2 − σm

σ2 + Aσm

)
= 0. (A.1)

In this equation, A = 1−φc

φc
(φc: the threshold value of the volume fraction of phase 1); the case

of φc = 1/3(A = 2) corresponds to the heterogeneous system composed of spherical spheres
(phase 1) and the homogenous matrix (phase 2) [12]. McLachlan [11, 12] derived the GEM
theory from this EM theory by taking into account the power law behaviours [3, 7–9, 11, 13].
The explicit form of the GEM theory for the binary composite is written as follows:
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+ φ2

(
σ

1/s
2 − σ

1/s
m

σ
1/s
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)
= 0. (A.2)

In this equation, the critical exponents, s and t , relate respectively to the increasing tendency
of electrical conductivity below φc and approaching tendency to σ1 over φc with the increase
of φ1. These critical exponents are believed to be universal [3, 4, 10–12]. The extension of
equation (A.1) into an n-phase system is straightforward. The condition of zero for the electric
polarization [6] reduces to the following equation [22].

n∑
i=1

φi

(
σi − σm

σi + Aσm

)
= 0. (A.3)

The extension of equation (A.2) into the ternary composite may be given in a
straightforward manner. However, at first sight, it seems to be a little difficult because of the
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existence of the critical exponents, t and s, in equation (A.2). Therefore, a simple derivation
is tried here for this extension. At first, it is assumed that the ternary composite is a mixture
of binary composites, A and B . The volume fractions of system A and B are respectively φA

and φB ; φA + φB = 1. The system A is composed of two phases, 1 and 2, whose volume
fractions are φA1 and φA2 respectively; φA1 + φA2 = 1. The electrical conductivity of phase i
is σi (i = 1, 2). The system B is composed of two phases, 1 and 3, whose volume fractions are
φB1 and φB2, respectively; φB1 + φB3 = 1. The electrical conductivity of phase 3 is σ3. The
only limitation for the notation of phases, 1, 2 and 3, is that the electrical conductivity of phase
1 is largest among these three phases. Then, it is possible to assume that both systems, A and
B , possess the same electrical conductivity as the effective medium, namely σm . Because of
the universality, the same critical exponents, t and s, can be adopted for both systems, A and
B .

The GEM theories for systems, A and B , are written as follows:
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Noting the relations, φ1 = φAφA1 + φBφB1, φ2 = φAφA2, and φ3 = φBφB3, equations (A.4)
and (A.5) reduce to a single equation, namely equation (1) in the text.
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It is easy to extend this equation to the general n-phase (n > 3) case. In addition, the present
method is also valid for the derivation of equation (A.3) in the EM theory under the assumption
that the σ1 is the largest among the σi (i = 1, 2, 3, . . . , n).
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[35] Fonseca F C and Muccillo R 2004 Solid State Ion. 166 157
[36] Nozaki K and Itami T 2004 J. Phys.: Condens. Matter 16 7763
[37] Nozaki K and Itami T 2006 Mater. Trans. 47 251

http://dx.doi.org/10.1103/PhysRevB.54.4000
http://dx.doi.org/10.1023/A:1009989427283
http://dx.doi.org/10.1103/PhysRevB.44.789
http://dx.doi.org/10.1103/PhysRevB.18.1813
http://dx.doi.org/10.1016/S0921-4526(98)00435-9
http://dx.doi.org/10.1103/PhysRevLett.69.494
http://dx.doi.org/10.1103/PhysRevLett.78.1755
http://dx.doi.org/10.1103/PhysRevLett.72.1068
http://dx.doi.org/10.1103/PhysRevB.57.2286
http://dx.doi.org/10.1103/PhysRevB.36.8845
http://dx.doi.org/10.1016/0167-2738(92)90340-U
http://dx.doi.org/10.1016/S0167-2738(98)00333-6
http://dx.doi.org/10.1016/S0167-2738(99)00117-4
http://dx.doi.org/10.1016/S0167-2738(99)00288-X
http://dx.doi.org/10.1016/j.ssi.2003.10.002
http://dx.doi.org/10.1088/0953-8984/16/43/015
http://dx.doi.org/10.2320/matertrans.47.251

	1. Introduction
	2. Experimental details
	3. Results
	4. Discussions and conclusions
	Acknowledgments
	Appendix. The derivation of GEM theory for the dc electrical conductivity of three phase case
	References

